A local updating algorithm for personalized PageRank via Chebyshev polynomials

نویسندگان

چکیده

The personalized PageRank algorithm is one of the most versatile tools for analysis networks. In spite its ubiquity, maintaining vectors when underlying network constantly evolves still a challenging task. To address this limitation, work proposes novel distributed to locally update graph topology changes. proposed based on use Chebyshev polynomials and equation that encompasses large family PageRank-based methods. particular, has following advantages: (i) it faster convergence speed than state-of-the-art alternatives local updating; (ii) can solution recent extensions rely complex dynamical processes which no updating algorithms have been developed. Experiments in real-world temporal an autonomous system validate effectiveness algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bookmark-Coloring Algorithm for Personalized PageRank Computing

We introduce a novel bookmark-coloring algorithm (BCA) that computes authority weights over the web pages utilizing the web hyperlink structure. The computed vector (BCV) is similar to the PageRank vector defined for a page-specific teleportation. Meanwhile, BCA is very fast, and BCV is sparse. BCA also has important algebraic properties. If several BCVs corresponding to a set of pages (called ...

متن کامل

A numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems

In this paper‎, two inverse problems of determining an unknown source term in a parabolic‎ equation are considered‎. ‎First‎, ‎the unknown source term is ‎estimated in the form of a combination of Chebyshev functions‎. ‎Then‎, ‎a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem‎. ‎For solving the problem‎, ‎the operational matrices of int...

متن کامل

Fast Ad-Hoc Search Algorithm for Personalized PageRank

あらまし Personalized PageRank (PPR) はグラフにおけるノード間の代表的な類似度であり,PPR に対 するノードの検索は多くのアプリケーションにおいて用いられている.多くのアプリケーションにおいてグラフ は動的に変化する性質があるなどの理由から,PPR に対してアドホックな検索が行えることが望ましい.アド ホックな検索とは,検索を行うごとに検索対象のグラフやパラメータを変えながら検索を行うことである.しか しグラフのサイズが大きくなるとアドホックに検索を行う計算コストが高くなるという問題がある.過去にも PPR の計算コストを低減するためにさまざまな手法が提案されてきた.しかしそれらの手法は事前計算が必要 であったり,近似的な検索結果になるなどの理由から有効にアドホックな検索を行えないという問題があった. 本論文では PPR に対してアドホックな検索を行う高...

متن کامل

Efficient Algorithms for Personalized PageRank

We present new, more efficient algorithms for estimating random walk scores such as Personalized PageRank from a given source node to one or several target nodes. These scores are useful for personalized search and recommendations on networks including social networks, user-item networks, and the web. Past work has proposed using Monte Carlo or using linear algebra to estimate scores from a sin...

متن کامل

Multiple root finder algorithm for Legendre and Chebyshev polynomials via Newton’s method

We exhibit a numerical technique based on Newton’s method for finding all the roots of Legendre and Chebyshev polynomials, which execute less iterations than the standard Newton’s method and whose results can be compared with those for Chebyshev polynomials roots, for which exists a well known analytical formula. Our algorithm guarantees at least nine decimal correct ciphers in the worst case, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Social Network Analysis and Mining

سال: 2022

ISSN: ['1869-5450', '1869-5469']

DOI: https://doi.org/10.1007/s13278-022-00860-5